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FINAL REPORT: DEVELOPING NOVEL FRAMEWORKS FOR
MANY-BODY ENSEMBLES

MIT Technical PoC: A. E. Hosoi (peko@mit.edu)
ARO Technical PoC: Samuel Stanton, (Samuel.c.stanton@us.army.mil)
Date: March 17, 2016

Summary. In this project we have made strides towards developing a mesoscopic statistical
framework (MSF) to model non-equilibrium ensembles comprised of large numbers of sim-
ple components. As a testbed, we have considered inhomogeneity formation in driven non-
equilibrium systems, namely we seek to predict whether inhomogeneities appear and to develop
a description of inhomogeneity formation that is valid across particle and system scales. These
systems can be tricky to analyze as mesoscale structures can lead to highly nonlinear macro-
scopic responses e.g. near a critical concentration, the effective yield stress and viscosity of a
suspension may increase by many orders of magnitude with the addition of a small number of
particles. Historically these systems have been modeled either by tracking individual particles
(which rapidly becomes prohibitively computationally expensive as the number of particles in-
creases), or by taking a phenomenological continuum approach in which the nonlinearities are
measured experimentally for specific systems rather than derived from microscopic principles.

In this project we have developed a hybrid approach which operates at the mesoscale and
hence reduces computational cost (relative to MD approaches) while maintaining a direct link
between effective material properties and microscopic dynamics. We are particularly inter-
ested in systems in which the microscopic dynamics of the system are known and reversible
(e.g. suspensions of particles in Stokes flow). These assumptions allow us to take advantage
of Markovian approaches hence the primary challenges of the project centered on developing
coarse-grained statistical descriptions of states that are valid at different length scales, and
qualifying transition probabilities between states.

Figure 1 presents a graphical overview of our method which required the development of novel
approaches to: (1) identify clusters and states, (2) quantify transition probabilities, and (3)
map these states and transitions onto a Markovian model. To focus our efforts, we chose to
study the process of cluster development in systems composed of multiple particles interacting
in simple ways (e.g. dense particulate suspensions). In particular we have applied our approach
to three model systems:

1. One -dimensional “blocks in a box.” Blocks, initially randomly placed on the grid, undergo
random motion due to the grid’s coupling to a thermal reservoir.

2. Driven spherical particles without hydrodynamic interactions. The particles are divided
into two species distinguished by the direction of the forcing. Particles do not experience
hydrodynamic forces due to the motion of other particles, but do undergo thermal Brow-
nian motion. The particles interact with one another solely through hard-core repulsive
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1D 2D/3D without 2D/3D with
Toy model hydrodynamics hydrodynamics

Description ••• ••• •••
MSF Transitions ••◦ •◦◦ ◦◦◦

Markov chain ••• ••• •••
Why do clusters form? ••• •◦◦ •◦◦
How do clusters form? ••◦ •◦◦ ◦◦◦

Table 1: Progress to date. ••• = completed, ••◦ = substantial progress, •◦◦ = preliminary
results. MSF = mesoscopic statistical framework. Note that our focus has been on developing
the MSF (white region of the table) and we are currently finalizing measurements of transition
probabilities in all three systems. Grey regions indicate promising new directions and questions
to address using our new hybrid approach.

interactions.

3. Spherical particles with hydrodynamic interactions. Particles are neutrally buoyant, sus-
pended in a Newtonian fluid and driven by an externally imposed shear flow.

In all three systems our goal is to apply our novel coarse-grained approach to predict the
conditions under which clustering occurs. This perspective can also be used to shed light
on questions related to why clusters form, what features of the microscopic dynamics drive
clustering, and quantification of growth and evolution of cluster size at different length scales
as the system evolves. While we have made significant advances along these lines, our results
have also opened up a number of new promising avenues of investigation. Progress of the project
to date is summarized in Table 1.

Key advances:

• Adopting a dendrogram approach to describe large particle ensembles. This was an impor-
tant insight that enabled us to rigorously distinguish clustered and non-clustered states.

• State identification based on dendrogram properties which provides a novel means of
coarse graining via statistical properties of the ensemble.

• Quantification of transition probabilities between states in three canonical systems of
increasing physical complexity.

• Integration of the three advances above into a Markovian model (in progress).
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Products:

• Zimoch, McKinley, and Hosoi. “Capillary Breakup of Discontinuously Rate Thickening
Suspensions.” PRL 111, 036001 (2013).

• Zimoch and Hosoi. “Cluster identification in particle suspensions.” (In progress).

• Zimoch and Hosoi. “Hybrid statistical approaches to predict clustering in many-body
systems.” (In progress).

Personnel: Pawel Zimoch (graduate student, MIT), A. E. Hosoi (PI, MIT).
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 fex!!" #
Z !

o
$ !u" % lnv!u"&du: (18)

To leading order in gradients, this system is then equiva-
lent to a system of Brownian particles at kBT # 1, with
mobility matrix Dij # "ijv2!!!xi""=#!!!xi"", and a local
free energy density f!!". Thus, according to mean-field
theory [18], whenever

 

d2f
d!2

# 1
!
% d
d!
$ !!" % lnv!!"&< 0 (19)

the system is locally unstable toward spinodal decomposi-
tion into domains of unequal density !. Also, it is globally
unstable to noise-induced (nucleated) phase separation
whenever ! lies within a common-tangent construction
on f!!" [18,19]. In particular, for  # 0 (left-right sym-
metry), any system with dv=d!<'v=! is liable, by the
above reasoning, to undergo phase separation. Since one
result of finite tumble duration is effectively to reduce v
[13], a strong enough tendency for the duration of tumbles
to increase with density may have similar effects.

In practice, of course, the very existence of a thermody-
namic mapping in this (strictly 1D) system ensures that the
bulk phase separation predicted by mean-field theory is
replaced by Poisson-distributed alternating domains of
mean size / e!. Here ! is a domain-wall energy, fixed
by gradient terms—if these remain compatible with the
existence of F ex (which is not guaranteed). To gain a first
estimate of such gradient terms (retaining  # 0) we
choose a model where, in a uniform system, v!!" #
v0e'$! with $ a constant. Now we argue that the depen-
dence v on ! is somewhat nonlocal, sampling ! on scales
% of order the run distance, v=#, which isO!1" in our units.
We therefore write for the nonuniform case v # v!~!"
where ~! # !% %2!00. (A linear term is forbidden by sym-
metry.) Thus "F ex="!!x" # lnv # lnv0 ' $!!% %2!00"
and

 fex!!;!0" # ! lnv0 % $$'!2 % %2!02&=2: (20)

The resulting f!!" is very familiar [19], and locally
unstable for all ! ( 1=$. A stable dense phase is however
regained if v!!" saturates at large !. Suppose, e.g., v #
v0 exp$'$’ arctan!!=’"&, which falls as v0e'$! before
approaching vsat # v0 exp$'$’&=2& at !) ’. So long
as ’> 2=$, a window of phase separation is maintained in
mean field. Notably, some of the gradient terms arising
from (the above form of) nonlocality now violate our
thermodynamic mapping. However, if one ignores such
violations, ! is found to be large, and domain formation
accordingly pronounced, whenever ’) 1.

Although rigor is now exhausted, the physics seems
reasonable: we know [2–4] that for an imposed v # v!x"
particles accumulate in regions of low v. Thus with dv=d!
sufficiently negative, ‘‘self-trapping’’ of high-density,
slow-moving domains can be expected. To investigate
whether this scenario arises, we have simulated Eq. (10)
for the above conditions and indeed observed the predicted

spinodal dynamics (Fig. 1). Moreover, if we create a fully
phase-separated initial state, this shows prolonged stability
when the mean density lies between the predicted binodals;
outside these, it collapses to uniformity. Thus the self-
trapping scenario appears valid despite violations of our
thermodynamic mapping at gradient level. Equations (14)
and (15) generalize obviously to d > 1, where they would
lead to genuine phase separation under similar conditions.
However, an adequate local approximation relating A;C to
run-and-tumble parameters remains to be established, and
the range of validity of the diffusive limit is unknown. In
d > 1 additional physics also enters, such as hydrodynamic
interactions which are only partially accounted for by our
use of a density-dependent velocity field [10].

Finally, let us consider a translationally invariant system
with no density dependence of # nor of v, but where vL;R
are biased by some colloidal interaction Hint. That is,
vR;L!x" # v* vT , with vT # ''T$"Hint="!!x"&0 and
'T the mobility (inverse friction) [7]. To first order in
small vT we then have V # vT and D # v2=#. The latter
swamps any small thermal contribution (DT # kBT'T), so
that (10) and (16) are, to this order, equivalent to a ther-
modynamic system with Hint, but at enhanced temperature
kBTeff ’ D='T . Correlators such as S!q; t0 ' t" +
h!q!t"!'q!t0"i follow, although in many cases Teff may
be so large that these approach the noninteracting limit,
S!q; t" # N exp$'Dq2t& [21]. A similar expansion shows
Teff also to control sedimentation equilibrium under weak
enough gravity (H # Hint %mg

R
!!x"xdx).

For the chosen !-independent v and #, this effective
temperature picture is intuitively clear and appealing.
Nonperturbatively, however, V # vT % !v2

T"0=# and
D # !v2 ' v2

T"=#. Since vT # vT$!&, Eq. (17) no longer
holds: the effective temperature concept breaks down as
soon as the colloidal or gravitational interactions are non-
infinitesimal. (This is true even within the gradient expan-
sion, which itself fails at vT=v ’ 1.) Perhaps instructive is
the exactly solved case of noninteracting sedimentation,

FIG. 1 (color online). Spinodal-like behavior of 6400 interact-
ing particles within the region where d2f=d!2 < 0. In the
numerics, ~! is defined by convolution of ! with a smooth
function of finite range *1=2; we set v0 # 2:5, $ # 0:01, ’ #
250. The box length is 16, with periodic boundary conditions,
and the mean density is 400. Dashed lines show the common-
tangent densities (! # 60; 800).
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plane, similar to experimental systems of self-propelled
colloids sedimented at an interface [23]. Each particle is
self-propelled with a constant force, and interactions
between particles result from isotropic excluded-volume
repulsion only. We include no mechanism for explicit
alignment or transmission of torques between particles.

The state of the system is represented by the positions
and self-propulsion directions fri; !igNi¼1 of all particles.
Their evolution is governed by the coupled overdamped
Langevin equations,

_r i ¼ D"½FexðfrigÞ þ Fp!̂i& þ
ffiffiffiffiffiffiffi
2D

p
"T
i ; (1)

_! i ¼
ffiffiffiffiffiffiffiffi
2Dr

p
#R
i : (2)

Here, Fex is an excluded-volume repulsive force given
by the WCA potential Vex ¼ 4$½ð%rÞ12 ' ð%rÞ6& þ $ if

r < 2ð1=6Þ, and zero otherwise [28], with % the nominal
particle diameter. We use $ ¼ kBT, but our results should
be insensitive to the exact strength and form of the poten-
tial. Fp is the magnitude of the self-propulsion force which,
in the absence of interactions, will move a particle with
speed vp ¼ D"Fp, !̂i ¼ ðcos!i; sin!iÞ, and " ¼ 1

kBT
. D

and Dr are translational and rotational diffusion constants,
which in the low-Reynolds-number regime are related by
Dr ¼ 3D

%2 . The # are Gaussian white noise variables with

h#iðtÞi ¼ 0 and h#iðtÞ#jðt0Þi ¼ &ij&ðt' t0Þ.
We nondimensionalized the equations of motion using

% and kBT as basic units of length and energy, and ' ¼ %2

D
as the unit of time. Simulations employed the stochastic
Runge-Kutta method [29] with maximum time step
2( 10'5'. Simulations mapping the phase diagram were
run with 15 000 particles until time 100', while larger
systems (up to 512 000 particles) were used to explore
kinetics and material properties. The simulation box was
square with periodic boundaries, with its size chosen to
achieve the desired density. The system is parametrized by
two dimensionless values, the packing fraction ( and the
Péclet number, which in our units is identical to the non-
dimensionalized velocity (Pe ¼ vp

'
% ). In this work, we

varied ( from near zero to the hard-sphere close-packing
value (cp ¼ )

2
ffiffi
3

p , and Pe from zero to 150.

Phase separation.—We first show that our results are
consistent with prior simulations [22] and confirm that this
system, despite the absence of aligning interactions, shows
the signature behaviors of an active fluid. In particular, the
active spheres undergo nonequilibrium clustering (Fig. 1)
similar to other model active systems [3,20,21,30].

We establish that this clustering is indeed athermal
phase separation by measuring the density in each phase
at different parameter values [Fig. 2(a)]. We observe a
binodal envelope beyond which the system separates into
two phases whose densities collapse onto a single coexis-
tence curve which is a function of activity alone. The phase
diagram is thus analogous to that of an equilibrium system

of mutually attracting particles undergoing phase separa-
tion, with Pe (playing the role of an attraction strength) as
the control parameter. This surprising result contradicts the
expectation that increased activity will destabilize aggre-
gates and suppress phase separation (as seen in Ref. [31])
and indicates that the effects of activity cannot be
described by an ‘‘effective temperature’’ in this system.
Additionally, we identify a critical point at the apex of

the bimodal (near Pe ¼ 50,( ¼ 0:7). In the vicinity of this
point, the system exhibits equilibriumlike critical phe-
nomena which will be detailed in a future publication.
The phase-separated steady state.—To characterize the

steady state, we measured the fraction of particles in the
dense phase at time 100' (Fig. 3). In contrast with recent
work [22] which placed the phase transition boundary at a
constant density, we observe that this cluster fraction is a
nontrivial function of the system parameters fcðPe;(Þ. To
understand this relationship we developed a minimal
model in which this function can be found analytically.
Let us assume the steady state contains a macroscopic
cluster which we take to be close packed. Particles in the
cluster are stationary in space but their !i continue to
evolve diffusively. We treat the gas as homogeneous and
isotropic, and assume that a particle colliding with the
cluster surface is immediately absorbed.
Within this model, we can write the rate of absorption of

particles of orientation ! from the gas phase as kinð!Þ ¼
1
2) *gvp cos!, where *g is the gas number density.
Integrating yields the total incoming flux per unit length:
kin ¼ *gvp

) . To estimate the rate of evaporation, note that a
particle on the cluster surface will remain there so long as
its self-propulsion direction remains ‘‘below the horizon’’,
i.e., n̂ ) !̂ < 0, where n̂ is normal to the surface. When its
direction moves above the horizon, it immediately escapes
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FIG. 2 (color online). (a) Phase densities as a function of
Péclet number (Pe) for a range of overall (. At low Pe the
system is single-phase, while at increased Pe it phase-separates.
The coexistence boundary is analogous to the binodal curve of
an equilibrium fluid, with Pe acting as an attraction strength.
(b) Observed density distributions for various Péclet numbers. In
the single-phase region below Pe * 50, Pð(Þ is peaked about the
overall system density (here ( ¼ 0:65). It broadens and flattens
as the critical point is approached, and becomes bimodal as the
system phase separates.

PRL 110, 055701 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

1 FEBRUARY 2013

055701-2

Phase-transition-like behavior

Baskaran

rods

2

(a) L = 21, � = 0.2, Pe = 120 (b) L = 10, � = 0.2, Pe = 120

(c) L = 4, � = 0.05, Pe = 120 (d) L = 10, � = 0.8, Pe = 120

(e) L = 21, � = 0.8, Pe = 40 (f) L = 21, � = 0.8, Pe = 40

Figure 2. Representative snapshots from pure active systems.
At low packing fraction we observe behavior consistent with
that of previous studies [5, 7, 8, 10, 11, 13, 15, 18–30]: (a)
small but coherent polar clusters, (b) large clusters, (c) tran-
sient apolar swarms. New behaviors emerge at higher packing
fractions: (d) a giant swarm exhibiting smectic and tetratic
order, (e) lanes in a nematic prior to breakdown, (f) giant
swarms appear after the lanes shown in (e) break down. The
head of each rod is indicated by a black dot, and rods within
different lanes are distinguished by color in (e). The system
parameters are listed above each image. Movies can be found
in [32].

have shown that excluded volume interactions play an
important role in emergent behavior in bacterial suspen-
sions, both in bulk and near boundaries [21, 33, 34], and
theoretical work has shown that density dependent dif-
fusion coefficients can drive pattern formation [35–37].
In this work, we demonstrate a generic mechanism by
which excluded volume interactions and propulsion can
give rise to segregation without signaling or long-range
interactions.

II. MODEL

We model rods as 2D spherocylinders (rectangles with
circular caps), represented as line segments of length `
on a two-dimensional plane with periodic boundary con-
ditions. We implement excluded volume interactions be-
tween rods with a purely repulsive WCA [38] potential
V (r) = 4kBT

h�
r
�

��12 �
�

r
�

��6
i

+ kBT , cut off by set-

ting V (r) = 0 for r > 21/6, where r is the shortest dis-
tance between the two representative line segments. This
potential gives the rods an effective diameter � and an
aspect ratio of L = (`/� + 1). In addition, a fraction fa
of rods are self-propelled and hence endowed with a con-
stant propulsive force with magnitude FP directed along
the rod axis.

We do not include hydrodynamic interactions in our
model; these can be neglected in 2D for a dense viscous
system due to screening. We consider overdamped Brow-
nian dynamics with the discretized equations of motion
[39]

r (t + �t) = r (t) + ⌅�1 (t) · FS (t) �t + �r (t)

û (t + �t) = û (t) + ��1
r TS ⇥ û (t) �t + �û (t) (1)

where û is a unit vector directed along the rod axis, r is
the position of the rod, �t is the time step, FS and TS
are the systematic force and torque, and �r and �û are
Brownian noise terms. The friction coefficients are given
by ⌅ = �kû ⌦ û + �? (I � û ⌦ û), with �? = 2�k, and
�r = L2

6 �k. The Brownian noise terms are determined by

h�r (t) �r (t)i = 2kBT⌅�1 (t) �t

h�û (t) �û (t)i = 2kBT
1

�r

⇣
Î � û ⌦ û

⌘
�t.

The systematic force FS = FE+FP includes both the ex-
cluded volume interaction forces FE and, for active rods,
the uniform self propulsion force, FP = FPû.

The adjustable dimensionless parameters are the as-
pect ratio L, the propulsion force F̃P = FP

�
kBT
�

��1
,

the area fraction �, and the motile fraction fa. The
Péclet number is given by Pe = LF̃P. We integrate
Eqs. 1 using a second-order predictor-corrector algorithm
[40, 41] with an adaptive time step with a maximum value

�t̃ ⌘ �t
⇣

�2�k
kBT

⌘�1

= 0.0003 [42].
Behavior of pure active rods: We performed simula-

tions of N = 6400 rods with aspect ratios L = 4, 10, 21,
for area fractions � 2 [0.05, 0.8], and Péclet numbers
Pe 2 [10, 120]. Initially, we set fa = 1.0 to study the be-
havior of the purely active system. We initialized all sys-
tems with states equilibrated without propulsion forces.
At low Pe and � the system remains disordered and ho-
mogeneous in density. Increasing Pe or � leads to ag-
gregation of the rods; while long rods L = 10, 21 form
long-lived polar clusters, the short rods L = 4 form tran-
sient aggregates which can better be described as swarms
(see Fig. 2).
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0.3 Particles in a shear field, with hydrodynamic interactions

The simulations on this model are performed using a Stokesian Dynamics code developed by
James Brady at Caltech [reference] and Jim Swan at MIT (formerly Caltech) [reference].

Simulating an entire ensemble of particles requires significant computational resources. To
simplify the simulations, and to focus on the essential nature of particle pair interactions, we
have chosen to consider an ensemble of particle-pair collisions in isolation, i.e. with no other
particles present.

Figure 3: The basic configuration used for simulations of particles with hydrodynamic inter-
actions. The neutrally buoyant particles are surrounded by a Newtonian fluid, which also
mediated the interactions between particles. These interactions can be simulated by solving
the Stokes equation.
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Figure 4: (a) A pair of particles in a periodic bounding box, subjected to uniform shear. This
is the basic situation considered for the model where hydrodynamic interactions were included.
(b) the trajectories of the particle pair in steady uniform shear, in the frame of reference centered
on one of the particles. It is a well-known phenomenon that some trajectories are “closed”,
meaning that the particles never separate from each other.
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Figure 1: Graphical overview of our mesoscale approach. Coarse-grained description, state
identification, and Markov chain analysis are all generalizable to a wide array of systems. Tran-
sition probabilities are unique to each specific case and reflect the physical dynamics relevant
for particular systems.
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A. Background. The fundamental assumption of equilibrium thermodynamics dictates that
all microstates of an isolated system can be observed with equal probability. In the majority
of systems made up of simple particles, this assumption leads to a homogeneous distribution
of particles and orientations. Notable exceptions are systems in which topological constraints
make more phase space available to non-homogeneous configurations, e.g. cubes in a confined
space, or elongated rods. In this project, however, we focus on systems made up of simple
spheres in which homogeneous behavior is extremely common. And yet, even for these simple
cases, when the system is driven away from equilibrium by an externally applied force, mass may
no longer be homogeneously distributed and clumps or “clusters” may appear. Such systems
are challenging to analyze because they do not obey the symmetries utilized in the analysis of
equilibrium systems or systems that can be treated as a continuum.

Historically these types of systems have been modeled using two types of strategies (see first and
second row in Figure 1). At the particle scale (top row), two commonly made assumptions are
that particles either do not interact with each other, or that for each particle this interaction
can be averaged over all other particles, as if each particle was placed in a “mean-field.” In
non-equilibrium systems such as particulate suspensions, where multi-particle interactions can
play a key role in the nonlinear macroscopic response of the system, the complexity of particle-
particle interactions quickly renders analysis intractable. In the current state-of-the-art, we
have a good understanding of two-particle interactions. Although the effect of interactions
between sets of three particles has been investigated (see e.g. work by Jeff Morris), no general
framework exists.

At the other end of the spectrum at the system scale (second row in in Figure 1), equilibrium
or near-equilibrium systems can be approximated as continua, and long-wavelength (hydrody-
namic) descriptions can be obtained by averaging on a scale larger than individual particles
but smaller than the characteristic scale associated with variations of macroscopic properties.
In non-equilibrium systems, such as polymer melts and other complex fluids, there are few
first-principles derivations of macroscopic material behavior. Instead, material properties are
extracted by fitting parameter values in phenomenological models to experimental data.

Bringing these microscopic and macroscopic worlds together presents a significant challenge.
What happens at the intermediate mesoscales? In equilibrium statistical mechanics, this ques-
tion is answered by the theory of renormalization, which shows how interactions between dif-
ferent components of a system change as the descriptive length scale changes. No equivalent
theory exists in the non-equilibrium world. This is problematic as the process of inhomogeneity
development occurs primarily at the mesoscale. Therefore, there is a need for a framework that
captures the structure of non-equilibrium systems as they evolve at scales larger than a single
particle, but smaller than the entire system. This research project aims to address this gap in
our understanding.

B. Identifying and coarse-graining states. There are four essential components to our ap-
proach: 1) state identification, 2) coarse-graining, 3) estimating transition probabilities and 4)
adapting Markovian approaches to capture out-of-equilibrium dynamics and to estimate prob-
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Figure 2: Illustration of the dendro-
gram representation. The rectangle
on the left shows the evolution of
blocks on a grid, at T = 4, from
an initial condition where all blocks
are stacked at the center of the grid.
Color indicates the number of blocks
are each grid point, with red indi-
cating high, and blue indicating low.
This simulation was carried out with
30 blocks on a grid with 100 loca-
tions. After approximately 25, 000
time steps, the large center cluster
falls apart due to the relatively high
temperature. Dendrograms represent
four snapshots at different times as in-
dicated by the dash white lines.

abilities of observing equilibrium configurations. The two historical approaches – molecular
dynamics and continuum approaches – produce outputs that are tied to a global reference
frame such as particle position x(t) or spatially varying densities ρ(x, t). In contrast, our ap-
proach takes a state-centric view in which we compute the probability of observing a state Si
independent of global position or orientation (e.g. in a non homogeneous state, we typically do
not need to know the positions of each of the individual clusters, rather we are interested in
the characteristic size and distribution of clusters).

To achieve this, we borrow a strategy from computational biology that captures the hierarchical
nature of clustering, namely the dendrogram (see Figure 2). Connections in the dendrogram
represent particles that are “close” as defined by a distance metric which typically combines
instantaneous relative velocity and position. States are defined by the structure of the den-
drogram. In addition the to the appealing state-centric nature of this type of representation,
dendrograms also provide an intuitive means of blending the discrete nature of the particles
(typically Lagrangian) with the continuum nature of the surrounding fluid (typically Eulerian).
Finally the dendrograms naturally lend themselves to coarse-graining which can be accom-
plished by selecting a characteristic scale and selecting a low dimensional representation of
detailed structure below this cut-off (e.g. characteristic mean and variance of the number of
particles in each cluster).

C. Transition probabilities: three model systems. The dendrogram coarse-graining approach
and Markovian dynamics can be universally applied to a wide variety of systems, however the
physical details that are unique to each individual systems must be captured in the transition
probabilities between states. Ultimately we would like to be able to derive these transition
probabilities from microscopic dynamics however, to demonstrate the effectiveness of our ap-
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proach, we begin by measuring these transition probabilities in reduced scale simulations, three
of which are described below.

Toy model: Blocks in a box. The simplest system we use to test our framework is a one-
dimensional discrete system with well-defined transition probabilities between microstates.
Consider a 1D domain with a periodic array of N discrete spaces coupled to a thermal bath
at temperature T . In these spaces, there reside n blocks of unit mass. There is no limit to
the number of blocks that can reside in a single space; blocks that occupy the same space are
stacked on top of one another. There are no energetic interactions between the blocks. For
a block to pass another block, the two must first form an intermediate state that consists of
a tower of height h = 2 blocks. In the absence of block interactions, each configuration has
the same energy, so the blocks undergo a diffusive random motion on the periodic array. As a
result, each configuration of the blocks is equally likely. However, when a “gravitational field”
is present – namely an external potential that varies with the vertical position of the block –
a block can change its energy via stacking. While stacking decreases the energy of the system,
there are fewer stacked configurations than unstacked configurations, so entropy drives the sys-
tem towards disorder. Thus, the blocks evolve under two competing effects: the energy drives
the system towards stacked blocks, i.e. vertical clustering, and the system’s entropy drives it
towards disaggregation. The relative magnitude of these two effects – and hence the equilibrium
distribution – depends on the temperature of the thermal bath to which the system is coupled.

The dynamics of the simulation can take several different forms, and the detailed statistics
of cluster formation depend on the specific form of the chosen transition probabilities. As a
concrete example, consider Gibbs sampling. In this case, the system evolves in discrete time
steps. At each step, one particle is chosen at random, and a move to the left or to the right is
proposed with equal probability. The energy of a configuration is calculated as

Eproposed =

n∑

i

hi ×G (1)

where G is the strength of the gravitational field and hi is the location above the base level of
the ith block. The proposed motion is then accepted with probability

P =
exp(Eproposed/T )

exp(Eproposed/T ) + exp(Ecurrent/T )
. (2)

Since there are no energetic interactions between particles themselves, the strength of the
gravitational field G can be set to 1, without loss of generality. The behavior of the system
is then controlled solely by the temperature of the bath, T which can be tuned to shift the
equilibrium distribution from a clustered to an unclustered state.

Driven particles without hydrodynamic interactions. The second model consists of spherical
particles enclosed in a two-dimensional box with periodic boundaries. Particles interact with
each other thorough hard-core dissipative interactions which are critical to the entropic nature of
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the force driving the clustering. There are no hydrodynamic interactions between particles, but
each particle individually behaves as if it was immersed in a fluid at a finite temperature hence
the particles undergo Brownian motion. After the system reaches equilibrium at a prescribed
temperature, a force is applied to each particle. The particles are divided into two species driven
with forces of equal magnitude but in opposite directions. This results in frequent collisions
between particles traveling in opposite direction, but less frequent collisions between particles
of the same species. As a result, the particles separate into “lanes”, each containing a single
particle species.

is then controlled solely by the temperature of the bath, T which can be tuned to shift the
equilibrium distribution from a clustered to an unclustered state.

This model provides an important testbed because it allows us to track the probabilities of
microstate transitions explicitly. For the other systems under consideration, obtaining such
information requires conducting a series of simulations from each possible meso-state, and
extracting the relative transition probabilities. ... lots of moving parts and this allows us to
isolate coarse-graining of states ....

Driven particles without hydrodynamic interactions The second model consists of spherical par-
ticles enclosed in a two-dimensional box with periodic boundaries. Particles interact with each
other thorough hard-core dissipative interactions which are critical to the entropic nature of
the force driving the clustering. There are no hydrodynamic interactions between particles, but
each particle individually behaves as if it was immersed in a fluid at a finite temperature. As
a result, each particle undergoes brownian motion. After the system reaches equilibrium at a
prescribed temperature, a force is applied to each particle. The particles are divided into two
species, driven with the same force but in opposite directions. This results in frequent collisions
between particles traveling in opposite direction, but less frequent collisions between particles
of the same species. As a result, the particles separate into “lanes”, each containing a single
particle species.

The simulations are carried out using the HOOMD-Blue molecular dynamics package, developed
by the Glotzer lab at the University of Michigan. The forcing scheme as well as a typical
simulation result is shown in figure 4.

brownian 
motion

F

Figure 4: (A) The forced particle model consists of two species of particles, forced in opposite
directions. The particles experience a viscous drag and stochastic brownian forces due to the
surrounding fluid bath, but no hydrodynamic interaction forces. (b-d) Typical frames from the
simulation, in progressive stages of segregation of particles. (b) Particles just before the forcing
is applied. (c) Particles begin to segregation. (d) Long term steady-state of the system, with
particles segregated into two streams.

Particles in a shear field, with hydrodynamic interactions The third model is composed of
spherical particles enclosed in a two-dimensional box with periodic boundary conditions. The
particles are embedded in a viscous fluid and interact with each other at low Reynolds number
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Figure 3: (A) The forced particle model consists of two species of particles, forced in opposite
directions. The particles experience a viscous drag and stochastic brownian forces due to the
surrounding fluid bath, but no hydrodynamic interaction forces. (b-d) Typical frames from the
simulation, in progressive stages of segregation of particles. (b) Particles just before the forcing
is applied. (c) Particles begin to segregation. (d) Long term steady-state of the system, with
particles segregated into two streams.

The simulations are carried out using the HOOMD-Blue molecular dynamics package, developed
by the Glotzer lab at the University of Michigan. The forcing scheme and a typical simulation
result along with the concomitant dendrograms is shown in figure 3.

Particles in a shear field, with hydrodynamic interactions. The third model is composed of
spherical particles enclosed in a two-dimensional box with periodic boundary conditions. The
particles are embedded in a viscous fluid and interact with each other through low Reynolds
number hydrodynamic forces. Therefore, the motion of any particle results in a net hydrody-
namic force exerted on the other particles. These interactions are purely dissipative and long
range ( ∼ 1/r). Energy is input via a steady shearing flow field.

The simulations on this model are performed using a Stokesian Dynamics code developed by
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James Brady at Caltech and Jim Swan at MIT (formerly Caltech). To discern the essential na-
ture of particle pair interactions, we begin by considering an ensemble of particle-pair collisions
in isolation as illustrated in Figure 4. Starting from random initial conditions, an ensemble
of particle pairs was simulated to establish the long-time particle pair probability density dis-
tribution, which shows the probability of observing a particle pair in a given configuration.
Particles are far more likely to be observed close to each other (indicated by the bright band
in Figure 4, bottom right) because the relative motion of the particles in these configurations
is slow. In contrast, the relative motion of particles when they are far from each other is fast,
resulting in low overall probability of observing particles in such configurations. Note that this
clustering occurs even though there are no attractive forces between the particles; rather the
time-averaged dynamics are such that the particles are far more likely to be observed close to
each other than far away.
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Figure 4: (a) A pair of particles in a periodic bounding box, subjected to uniform shear. (b)
Schematic of trajectories of the particle pair in steady uniform shear, in the frame of reference
centered on one of the particles. It is a well-known phenomenon that some trajectories are
“closed”, meaning that the particles never separate from each other. (Bottom) Snapshots of a
pair collision ensemble simulation. (Left) One of the particles is located at the center of the
image (not shown), while the other particle is represented by a single point, blue or red. Each
point represents one simulation. Blue and red points are reflections of each other about the
center of the image. The white region at the center of the image shows the excluded volume
due to the presence of a particle at the center of the image. (Right) Time-averaged locations
of the particle pair. Bright colors indicate regions where the second particle is more likely to
be observed.

D. Markovian model. Having identified the coarse-grained system states Sn and transition
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probabilities qi→j between states, it is a straightforward exercise to apply a Markovian anal-
ysis to evolve the system though non-equilibrium configurations and compute probabilities of
observing equilibrium states by invoking principles of detailed balance. Consider a trajectory
through state space denoted by:

S = (S = m,S1, S2, ...SN , S = n).

Given transition probabilities qi→j which are dictated by the dynamics, we seek the evolution of
the probability of observing state i at time t, πi(t), and the long-term probability of observing
state i, πi. The first can be computed by iteratively applying the transition probability matrix
to the initial state. The second can be directly computed as

πi =
eαi

∑
k e

αk

where

αn = log

(
πn
πm

)
= log

(
qm→S1

qS1→m

)
+

N∑

i=1

log

(
qSi→Si+1

qSi+1→Si

)
+ log

(
qN→n

qn→N

)
.

The final stage of this project is the integration of all of the components described above. In
each of the three systems (blocks in a box, particles without hydrodynamics, and particles with
hydrodynamics) we can represent states of the system by dendrograms (examples shown in
Figures 2 and 3). These dendrograms are then coarse-grained and classified. Finally transition
probabilities between these classifications can be measured numerically (currently underway)
and predictions from the Markov model can be compared with full MD simulations.
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